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Abstract For a positive real number w let the Balancing distance ‖w‖B be the distance
from w to the closest Balancing number. The Balancing sequence is defined by the initial
values B0 = 0, B1 = 1 and by the binary recurrence relation Bn+2 = 6Bn+1 − Bn , n ≥ 0.
In this paper, we show that there exist only one positive integer triple (a, b, c) such that the
Balancing distances ‖ab‖B , ‖ac‖B and ‖bc‖B all are exactly 1.
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1 Introduction

Let {Bn}n≥0 denote the sequence of Balancing numbers given by B0 = 0, B1 = 1 and
Bn+2 = 6Bn+1 − Bn for all integers n ≥ 0. For a positive real number w we define the
Balancing distance of w by

‖w‖B = min{|w − Bn | : n ≥ 0}.
This notion is analogous to the Fibonacci distance ‖w‖F introduced by Luca et al. [1]. They
showed that if 1 ≤ a < b < c are integers, then

max{‖ab‖F , ‖ac‖F , ‖bc‖F } > exp(0.034
√
log c).
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2 M. Alp et al.

This result has a numerical corollary, namely if

max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ 2, (1.1)

then c ≤ exp(415.62). In fact, the solution with maximal c to inequality (1.1) is

(a, b, c) = (1, 11, 235).

Note, that the origin of the problem is to solve the system of Diophantine equations
ab + 1 = Gx , ac + 1 = Gy and bc + 1 = Gz , where the sequence {G}∞n=0 satisfies a given
recurrence relation of order two. For more information, see [1–4]. The main result of this
work is the following.

Theorem 1.1 Suppose that εx , εy and εz are all in the set {±1}. If there exist integers
1 ≤ a < b < c such that

ab + εx = Bx ,

ac + εy = By,

bc + εz = Bz (1.2)

hold with positive integers x, y and z, then

(a, b, c) = (1, 34, 1188), (x, y, z) = (3, 5, 7), (εx , εy, εz) = (1, 1,−1). (1.3)

The associate sequence of {Bn} is denoted by {Cn}. It is known that C0 = 2, C1 = 6, and
Cn+2 = 6Cn−1 − Cn (n ≥ 0), moreover

Bn = αn − βn

α − β
and Cn = αn + βn, (1.4)

where α = 3 + 2
√
2, β = 3 − 2

√
2. These explicit formulae (or the common recurrence

relation of {Bn} and {Cn}) make it possible to define the Balancing sequence and its associate
sequence for negative subscripts, too.

In the next section we collect the auxiliary results we need in the proof of Theorem 1.1.

2 Preliminary results

Lemma 2.1 Any non-negative integer n satisfies

1. B2n ≡ 0 (mod 6),
2. B4n+ε ≡ ε (mod 6), where ε ∈ {±1},
3. Cn ≡ 2 (mod 4).

Proof The statements immediately come from the fact that the sequences {Bn} and {Cn}
are periodic for any modulus. Considering the initial values, together with the common
recurrence relation, the proof of the lemma is an easy consequence. 	

Lemma 2.2 Assume that n ≥ m are arbitrary non-negative integers. Then the following
identities hold.

1. Bn+m + Bn−m = BnCm,
2. Bn+m − Bn−m = CnBm,
3. Bn+mBn−m = (Bn + Bm)(Bn − Bm),
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4. B2n + ε = (Bn − εBn−1)(Bn+1 + εBn), where ε ∈ {±1}.
Proof All formulae can be proved by using (1.4). We remark that the first three identities
have already been appeared in [6], but this work is relatively inaccessible. Identity (3) was
also shown in [7].

Here we deal only with (4). Since αβ = 1, expanding the product (Bn − εBn−1)(Bn+1 +
εBn) we find

(α − β)α2n − (α − β)β2n + (α − β)2ε

(α − β)2
= B2n + ε.

	

Sometimes it facilitates the usage of Lemma 2.2, if one specifies the parameters as follows.

Corollary 2.3 1. Bn+1 + Bn−1 = 6Bn and Bn+1 − Bn−1 = Cn follow from Lemma 2.2 (1)
and (2), respectively, by taking m = 1,

2. B2n−1 + 1 = BnCn−1 and B2n−1 − 1 = Bn−1Cn can be deduced from Lemma 2.2 (1)
and (2), respectively, by m = n − 1,

3. B2n = BnCn is a consequence of case n = m of Lemma 2.2 (1) (or (2)),
4. B2n−1 = (Bn + Bn−1)(Bn − Bn−1) is implied by the case n = m − 1 of Lemma 2.2 (3).

Lemma 2.4 Suppose that n and m are arbitrary non-negative integers, at least one of them
is positive, further put ν = gcd(n,m). Then

1. gcd(Bn, Bm) = Bν ,

2. gcd(Cn,Cm) =
{
Cν, if

n
ν

≡ m
ν

≡ 1 (mod 2);
2, otherwise,

3. gcd(Bn,Cm) =
{
Cν, if n

ν
�≡ m

ν
≡ 1 (mod 2);

1 or 2, otherwise,
4. gcd(Bn+3 + εBn+2, Bn+1 + εBn) = 1, where ε ∈ {±1},
5. gcd(Bn+2 + εBn+1, Bn+1 + εBn) = 1, where ε ∈ {±1}.
Proof The first three results are well-known from Carmichael’s general work [8].

To show the next to last property, observe that the terms sn = Bn +εBn−1 of the sequence
{sn} satisfy sn = 6sn−1−sn−2, s0 = −ε, s1 = 1.Clearly, 2 � sn and 3 � sn . If p | gcd(sn, sn−2)

holds for some prime p ≥ 5, then p | sn + sn−2 = 6sn−1, and then p | sn−1 follows. Thus
p divides three consecutive terms in {sn}, consequently p | s0, a contradiction.

The treatment of the last statement is similar. 	

Lemma 2.5 For any positive integer n,

gcd(B2n−2 ± 1, Bn ± 1) ≤ 41615.

Proof Put Q0 = gcd(B2n−2 ±1, Bn ±1). Applying Lemma 2.2 (3) withm = 1 and Lemma
2.4 (1), one can immediately conclude

Q0 ≤ gcd (B2n−1B2n−3, Bn+1Bn−1)

≤ gcd (B2n−1, Bn+1) gcd (B2n−1, Bn−1)

× gcd (B2n−3, Bn+1) gcd (B2n−3, Bn−1)

≤ B3 · B1 · B5 · B1 = 41615.
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Lemma 2.6 Let n ≥ 2 denote a positive integer, and let ε1, ε2 ∈ {±1}. For the greatest
common divisor Q1 = gcd(Bn − ε1, Bn−2 − ε2),

1. Q1 ≤ 68 if ε1 = ε2;

2. Q1 =
⎧
⎨

⎩

Bk − Bk−1, if n = 2k;
6C2k+1, if n = 4k + 3;
C2k, if n = 4k + 1

⎫
⎬

⎭
if ε1 = −1 and ε2 = 1;

3. Q1 =
⎧
⎨

⎩

Bk + Bk−1, if n = 2k;
2B2k+1, if n = 4k + 3;
6B2k, if n = 4k + 1

⎫
⎬

⎭
if ε1 = 1 and ε2 = −1.

hold.

Proof (1) Applying Lemma 2.2 (3), the defining relation of the sequence {Bn} and Lemma
2.4 (1), one has

Q1 = gcd(Bn − ε1, Bn − Bn−2) ≤ gcd(Bn+1Bn−1, Bn − Bn−2)

≤ gcd(Bn+1, 2Bn − 6Bn−1) · gcd(Bn−1, 6Bn−1 − 2Bn−2)

= gcd(Bn+1, 6Bn+1 − 34Bn) · gcd(Bn−1, 2Bn−2) ≤ 34 · 2.
(2) Here the principal tool is, according to the parity of n, the application of Lemma 2.2

(4) and Corollary 2.3 (2).
If n = 2k, then

B2k + 1 = (Bk − Bk−1)(Bk+1 + Bk)

and

B2k−2 − 1 = (Bk−1 + Bk−2)(Bk − Bk−1).

Obviously, the greatest common divisor is Bk − Bk−1 if and only if gcd(Bk+1 + Bk, Bk−1 +
Bk−2) = 1. But it is clear by Lemma 2.4 (4).

Assume that n = 4k + 3. Then Corollary 2.3 (2) shows

B4k+3 + 1 = B2k+2C2k+1 and B4k+1 − 1 = B2kC2k+1.

Recall Lemma 2.1 (1) to show Q1 = 6C2k+1. Indeed, it is easy to see that B2k+2/6 and B2k/6
coprimes. (For instance, define the sequence bn = B2n/6. It has initial values b0 = 0, b1 = 1
and bn = 34bn−1 − bn−2 holds for n ≥ 2. The consecutive terms of {bn} are coprime.)

Suppose n = 4k + 1. Now Corollary 2.3 (2) gives

B4k+1 + 1 = B2k+1C2k and B4k−1 − 1 = B2k−1C2k,

and the statement is a direct consequence of Lemma 2.4 (1) and Lemma 2.1 (2).
(3) We leave to the reader the proof since the analogous way to the proof of Lemma 2.6

(2) works. 	

Lemma 2.7 Let n ≥ 2 denote a positive integer, and let ε1, ε2 ∈ {±1}. For the greatest
common divisor Q2 = gcd(B2n−3 − ε1, Bn − ε2), we have

1. Q2 ≤ 2380 if ε1 = 1;

2. Q2 =
⎧
⎨

⎩

Bk + Bk−1, if n = 2k;
2B2k+1, if n = 4k + 3;
6μB2k, if n = 4k + 1

⎫
⎬

⎭
if ε1 = −1 and ε2 = 1, where μ = 1 holds

unless k = 3s + 1, μ = 33;
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3. Q2 =
⎧
⎨

⎩

Bk − Bk−1, if n = 2k;
6μC2k+1, if n = 4k + 3
C2k, if n = 4k + 1;

⎫
⎬

⎭
if ε1 = −1 and ε2 = − 1, where μ = 1 holds

unless k = 3s + 2, μ = 33.

Proof (1) Corollary 2.3 (2), Lemma 2.2 (3), further Lemma 2.4 (1) and (3) imply

Q2 ≤ gcd(Bn−2Cn−1, Bn+1Bn−1)

≤ gcd(Bn−2, Bn+1) gcd(Bn−2, Bn−1)

× gcd(Cn−1, Bn+1) gcd(Cn−1, Bn−1)

≤ B3 · B1 · C2 · 2 = 2380.

(2) If n = 2k, then according to Corollary 2.3 (2), (4) and Lemma 2.2 (4),

B4k−3 + 1 = (Bk + Bk−1)(Bk − Bk−1)C2k−2

and

B2k − 1 = (Bk + Bk−1)(Bk+1 − Bk).

Lemma 2.4 (5) provides gcd(Bk+1 − Bk, Bk − Bk−1) = 1, moreover by Corollary 2.3 (4)
we know that gcd(Bk+1 − Bk,C2k−2) ≤ gcd(B2k+1,C2k−2). But the latest greatest common
divisor is 1, according to Lemma 2.4 (3) and Lemma 2.1 (2).

If n = 4k+3, then consider the following decompositions (via Corollary 2.3 (2) and (3)):

B8k+3 + 1 = B2k+1C2k+1C4k+1 and B4k+3 − 1 = B2k+1C2k+2.

Clearly, gcd(C2k+2,C2k+1) = 2 and gcd(C2k+2,C4k+1) = 2 follow in the virtue of Lemma
2.4 (2), which together with Lemma 2.1 (3) show the statement.

Suppose n = 4k + 1. Now we have

B8k−1 + 1 = B2kC2kC4k−1 and B4k+1 − 1 = B2kC2k+1.

It is easy to see, that gcd(C2k+1,C2k) = 2, further gcd(C2k+1,C4k−1) = 198 holds if
3 | 2k + 1, otherwise gcd(C2k+1,C4k−1) = 6. Then apply Lemma 2.1 (3) again.

(3) The proof is analogous to the proof of Lemma 2.7 (2), the details are left to the
reader. 	

Lemma 2.8 If n ≥ 3 is a natural number, then

αn−0.9831 < Bn < αn−0.983 and αn < Cn < αn+0.004.

Proof The first statement was shown in [2] (see Lemma 4). Note that from the proof it is
clear that Bn < αn−0.983 is longer available if 0 ≤ n ≤ 2. The second part follows from a
more general result (see Lemma 2.2 in [9]). 	

Lemma 2.9 System (1.2), together with 2 ≤ y < z implies z ≤ 2y − 1.

Proof By system (1.2) and its assertions, further by Lemma 2.8 and y ≥ 2 we obtain

ac = By − εy ≤ By + 1 < αy−0.983 + 1 < αy−0.895.

On the other hand, c ≥ 3 and z ≥ 3 admit

c >
√

(c − 1)c + 1 ≥ √
Bz > α(z−0.9831)/2.

Comparing the two estimates, first z < 2y − 0.8069 and then z ≤ 2y − 1 follows. 	


123
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Lemma 2.10 If z = y + 2 ≥ 139, then system (1.2) has no solution.

Proof The proof is split into three parts according to εz and εy .
I. εz = εy . By the virtue of Lemma 2.6 (1), one can conclude

c | gcd(Bz − εz, By − εz) ≤ 68 < α2.4. (2.1)

Then we arrived at a contradiction by z < 6, which is resulted from c >
√
Bz > α(z−0.9831)/2

and (2.1).
II. εz = −1, εy = 1. Assume first that z is even, and put z = 2k. By Lemma 2.6 (2) and

Lemma 2.8 we obtain

c | gcd(Bz + 1, Bz−2 − 1) = Bk − Bk−1 < Bk < αk−0,983. (2.2)

On the other hand, c >
√
Bz > α(2k−0.9831)/2, a contradiction regarding to (2.2).

Much more complicated the case z odd with z = 4k+3. Note that now k ≥ 34. Although,
combining Lemma 2.6 (2) and Lemma 2.8

c | gcd(Bz + 1, Bz−2 − 1) = 6C2k+1 < α1.017+(2k+1.004) = α2k+2.021

follow, the argument c >
√
Bz > α(4k+2.0169)/2 leads no to the desired contradiction. Let d

denote a positive integer for which cd = 6C2k+1. Thus

d = 6C2k+1

c
<

α2k+2.021

α2k+1.00845
= α1.01255 < 5.96,

so d ∈ {1, 2, 3, 4, 5}. Hence c = 6C2k+1/d , and system (1.2) together with Corollary 2.3 (2)
gives a = B2k/6 and b = B2k+2/6. Obviously, we need only to solve the equation

(
d

6

)2

B2k B2k+2 + εx = Bx . (2.3)

First, it is easy to conclude from the estimates of Lemma 2.8 and (2.3) that B4k−2 < Bx <

B4k+1 hold. Then the case x = 4k, via Lemma 2.2 (4), leads to

d2B2k+2 = 36

(
εx B2k + B2k+1 − B2k−1 − εx

B2k+1B2k−1

B2k

)
.

Consequently, 36B2k+1B2k−1/B2k is an integer, which together with Lemma 2.4 (1) con-
tradicts k ≥ 34. If x = 4k − 1, then using the factorization appears in Corollary 2.3 (2),
either

d2B2k+2 = 36C2k−1 or d2B2k B2k+2 = 36B2k+1C2k .

Since d ≤ 5 and gcd(B2k+2,C2k−1) is small the first possibility is excluded. Similarly, by
gcd(B2k+1, B(2k+1)±1) = 1 the second instance is out of the question, too.

To complete case II, finally we assume z = 4k + 1. Consider

c | gcd(Bz + 1, Bz−2 − 1) = C2k < α2k+0.004

and c >
√
Bz > α(4k+0.0169)/2, which lead to a contradiction by

d = C2k

c
<

α2k+0.004

α2k+0.00845
< 1.

III. εz = 1, εy = −1. Suppose first that z = 2k. By Lemma 2.6 (3) and Lemma 2.8, we
obtain

c | gcd(Bz + 1, Bz−2 − 1) = Bk + Bk−1 < αk−0,983 + αk−1.983. (2.4)
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Moreover, c >
√
Bz > α(2k−0.9831)/2 holds, which contradicts (2.4).

Similar conclusion comes from z = 4k + 3, since

c | gcd(Bz + 1, Bz−2 − 1) = 2B2k+1 < α2k−0.417

and c >
√
Bz > α2k+1.

Now let z = 4k + 1. Then

α(4k+0.0169)/2 <
√
Bz < c | gcd(Bz + 1, Bz−2 − 1) = 6B2k < α2k+0.034.

Clearly, there exists a positive integer d such that cd = 6B2k . Now

d = 6B2k

c
<

α2k+0.034

α2k+0.00845
< α0.03 < 1.1

imply d = 1. Thus c = 6B2k , further a = C2k−1/6 and b = C2k+1/6 follow from Corollary
2.3 (2). Hence we must solve the Diophantine equation

C2k−1C2k+1 + 36εx = 36Bx .

Applying Lemma 2.8, since k is large enough, and so x , we have

αx+1.04 < 36Bx = C2k−1C2k+1 + 36 < α4k+0.009,

and similarly

αx+1.05 > 36Bx ≥ C2k−1C2k+1 − 36 > α4k−0.001.

Combining the results above, x = 4k − 1 follows. Then either

C2k+1 = 36B2k or C2k−1C2k+1 = 36B2k−1C2k .

Both of them are impossible since k is large enough (consider gcd(B2k,C2k−1) and
gcd(C2k,C(2k)±1), respectively). 	


Lemma 2.11 If z = 2y − 3 ≥ 139, then there is no solution to system (1.2).

Proof Note that the condition z ≥ 139 yields y ≥ 71.
I. εz = 1, εy = ±1. According to Lemma 2.7 (1) and Lemma 2.8 we arrive at a contra-

diction by

α(2y−3.9831)/2 <
√
B2y−3 < c | gcd(B2y−3 − 1, By − εy) ≤ 2380 < α4.5.

II. εz = −1, εy = ±1. Varying εy = ±1 and the results of Lemma 2.7 (2) and (3), exactly
8 variations exist. We handle them together since the same idea can be applied in each case.

Observe first that by Lemma 2.7 (2) and (3), Q = gcd(B2y−3 + 1, By − εy) does not
exceed

198B�(y+1)/2
 < α3.001α(y+1)/2−0.983 < αy/2+2.6.

On the other hand, c | Q further c > α((2y−3)−0.9831)/2 > αy−2. Conferring y − 2 and
y/2 + 2.6 we are at a contradiction again. 	
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3 Proof of the theorem

Suppose that 1 ≤ a < b < c and εx , εy, εz ∈ {±1} satisfy system (1.2) for some non-
negative integer x, y and z. Then Bx = ab + εx ≥ 1 · 2 + εx ≥ 1, and x ≥ 1. Similarly,
By = ac+εy ≥ 2 implies y ≥ 2. Thus By ≥ 6. However, y > x is not necessary, only y ≥ x
follows. Indeed, if a = 1 or a = 2, then By − Bx = a(c− b) + εy − εx ≤ 0 is possible. It is
easy to see, that By − Bx �= −1, i.e. y ≥ x . The difference Bz − By = c(b − a) + εz − εy
is always positive, so z > y holds. Subsequently, we deduce 1 ≤ x ≤ y < z and then z ≥ 3.
These observations will be important when the small cases will be verified by computer.

Now we must distinguish between two situations.

Case 3.1 z ≥ 139

Put P = gcd
(
Bz − εz, By − εy

)
. Taking Bm = 1 in Lemma 2.2 (3), together with Lemma

2.4 (1) we have

P ≤ gcd
(
Bz−1Bz+1, By−1By+1

)

≤
∏

i, j∈{±1}
gcd

(
Bz−i , By− j

) =
∏

i, j∈{±1}
Bgcd(z−i,y− j). (3.1)

Obviously, there exists a positive integer ki j such that gcd (z − i, y − j) = (z − i)/ki j .
Suppose that ki j ≥ 8 holds for any pair (i, j) ∈ {±1}2. Since c | P , then Lemma 2.8

implies

α(z−1)/2 <
√
Bz < c ≤ P ≤ B2

(z−1)/8B
2
(z+1)/8 < α4((z+1)/8−0.983). (3.2)

Comparing the exponents of α in (3.2), we arrive at a contradiction.
Hence ki j ≤ 7 is necessarily true for at least one possible pair (i, j). Let k denote this ki j .

Further assume that
z − i

k
= y − j

�

holds for a suitable positive integer � coprime to k.
Suppose for the moment that � > k. Then z − i < y − j leads to z = y + 1 via y < z.

Thus Lemma 2.2 (3) and Lemma 2.4 (1) show

P = gcd
(
By+1 − εz, By − εy

) ≤ gcd
(
By+2By, By+1By−1

)

= gcd
(
By+2, By−1

) ≤ B3 = 35 < α2.1.

Hence, by the first part of (3.2), we have a contradiction by (z − 1)/2 < 2.1.
Assume now that � = k. Trivially, k = � = 1. Since z − i = y − j, we obtain z = y + 2,

which provides no solution in the virtue of Lemma 2.10.
In the sequel, we assume � < k. First analyze the case 2 ≤ k/�. Here

z = k

�
(y − j) + i ≥ 2 (y − 1) − 1 = 2y − 3,

which, together with Lemma (2.9) implies the following three possibilities: z = 2y − 3,
z = 2y − 2 and z = 2y − 1.

(a) If z = 2y − 3, then Lemma (2.11) handles the problem.
(b) If z = 2y − 2, then hanging together Lemma 2.5, it follows that

α
z−0.9831

2 <
√
Bz < c ≤ gcd

(
B2y−2 − εz, By − εy

) ≤ 41615 < α5.1,

and then z < 10.3.
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(c) When z = 2y − 1 holds, then by Lemma 2.8 we have

b

a
= B2y−1 − εz

By − εy
≥ B2y−1 − 1

By + 1
>

α2y−1−0.9831 − 1

αy−0.983 + 1
> αy−1.2.

Subsequently,
a2αy−1.2 − 1 < ab − 1 ≤ Bx < αx−0.983

follow. Since a2αy−1.2 − 1 ≥ a2(αy−1.2 − 1) > a2αy−1.4, we can deduce

a2 <
αx−0.983

αy−1.4 = αx−y+0.417.

Obviously, y > x leads to a contradiction by αx−y+0.417 ≤ α−0.587 < 1. That is y = x and
now αx−y+0.417 = α0.417 < 2.1 entails a = 1. This specific case, together with (1.2) easily
provides b = By − 1, c = By + 1, moreover

B2y−1 − εz = B2
y − 1.

Note that εz = 1 admits B2y−1 = B2
y , which contradicts the Primitive Divisor Theorem (see

[10]) since y is large enough. Supposing εz = −1, we obtain

B2y−1 + 1 = B2
y − 1.

But Corollary 2.3 (2) comes up with B2y−1 + 1 = ByCy−1. Hence By must divide B2
y − 1,

which is impossible because of y ≥ 2.
Finally, assume k/� < 2. Note that it implies k ≥ 3. Taking any pair (i0, j0) �= (i, j), we

have

z − i0 = k

�
(y − j) + i − i0.

Now themain goal is to calculate the best upper bound for P0 = gcd (z − i0, y − j0). Starting
with

P0 = gcd

(
k

�
(y − j) + i − i0, y − j0

)

≤ gcd (k (y − j) + �(i − i0), k(y − j0)) = |k( j0 − j) + �(i − i0)|,
we need to consider κ = |k( j0 − j) + �(i − i0)|. Clearly, it is non-zero, further the three
cases

j �= j0, i �= i0, j �= j0, i = i0, j = j0, i �= i0

give the upper bounds 2(k + �), 2k, 2� on κ , respectively. Then using inequality (3.1), it
yields

α
z−1
2 < P = gcd

(
Bz − εz, By − εy

) ≤
∏

i, j∈{±1}
Bgcd(z−i,y− j)

≤ α
z+1
k +2(k+�)+2k+2�−4·0.983.

Going through the eligible pairs

(k, �) = (3, 2), (4, 3), (5, 3), (5, 4), (6, 5), (7, 4), (7, 5), (7, 6),

the previous argument provides the upper bounds

z < 105.1, 101.8, 98, 111.3, 124.1, 115.8, 127, 138.2,

respectively. The premise z ≥ 139 contradicts any of these bounds.
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Case 3.2 z ≤ 138

We ran a computer search to detect all positive integer solutions to system (1.2). Note that
the case εx = εy = εz = 1 has already been solved in [2]. Observe that

a =
√

(Bx − εx )(By − εy)

Bz − εz

is integer. Clearly, analogous formulae exist for b and c, too. Taking the range 1 ≤ x ≤ y <

z ≤ 138, and checking if the above numbers a, b and c are all integer, we found only the
solution given by (1.3). Thus the proof of the theorem is complete.
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